

Autonomous Remote Sensor Networks

- Graduate Student: Matt Ahlrichs
- Project Leads: Dr. Martin Cenek and Dr. Aaron Dotson
- Hosting University: University of Alaska Anchorage
- Student Participation: Undergraduate assistance in sensor construction
- Faculty Mentor: Dr. Aaron Dotson
- Project Support: Dr. Aaron Dotson, Dr. Martin Cenek, and Dr. Robert Lang
- Project Advocate: Arctic Domain Awareness Center

Remote Autonomous Sensors: Description and Baseline

- The remote nature and extreme climates along the US/Canadian Border makes monitoring these large areas cost prohibitive
- Currently, the United States has large gaps in its ability to detect movement on an as-needed-basis in remote areas

- This proposed network aims to meet that need by developing a framework for an autonomous sensor network that is low cost, able to function for a defined period of time, robust, and easily deployable
- This platform can function as a stand-alone monitoring network or provide additional spatial and temporal resolution to existing monitoring networks

Project Description

 Determine feasibility of a hypothetical sensor network in northern Montana

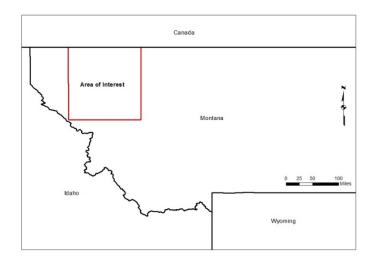
- My project role is divided into three tasks
 - Estimate time-to-failure of a network
 - Develop a redundancy model for sensor communication in ArcGIS
 - Complete a Life Cycle Assessment (LCA)
- For the purposes of this study the model will estimate sensor loss over a three-month period, ensuring that the remaining network does not have significant gaps in coverage which preclude being able to receive and transmit data

Remote Autonomous Sensors: Relevance and Method

 Currently, the United States has large gaps in its ability to detect movement on an as-needed-basis in remote areas

This study aims to create the framework for a model that will determine
if a sensor's design and distribution is appropriate for the target
environment.

- Reduce the number of sensors that will need to be deployed and subsequently collected
- Each task has its own unique methodology

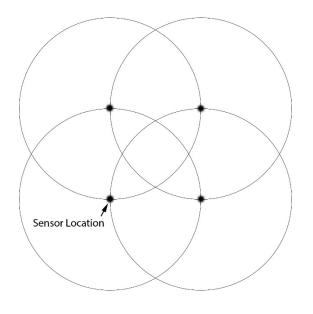


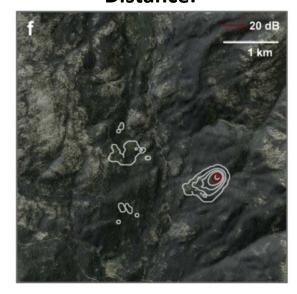
Methodology

- Time to failure of device
 - Battery type
 - Seasonal changes
 - ArcGIS model to estimate where sensors will fail due to environmental conditions resulting from topologic, meteorologic, and land cover

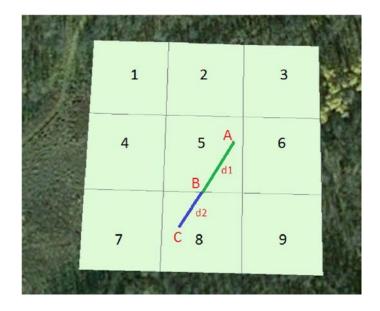
- Communication redundancy model
 - Use ArcGIS to estimate the impact of topologic, meteorologic, and land cover to acoustic receiving distance and radio frequency transmission distance

http://main.panasonic-eneloop.eu/en/eneloop-self-discharge



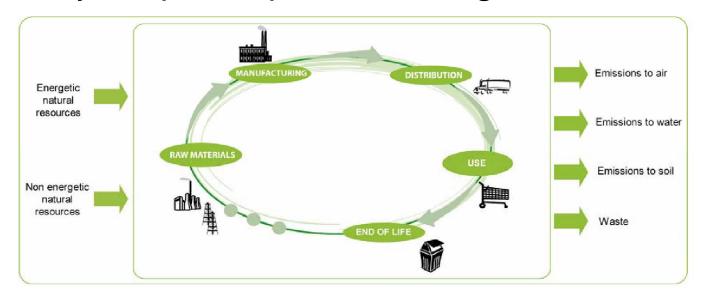


Methodology


Sensor Spacing:

Acoustic Transmission Distance:

Radio Frequency Propagation Loss:



Methodology

- Life Cycle Assessment
 - Use existing LCAs to guide emission and toxicity calculation
 - Identify which components have the highest life cycle costs
 - Find alternative materials to reduce environmental impact and ensure ability to acquire components in the long-term

Remote Autonomous Sensors: Schedule and Metrics

- Currently in year two of the project.
- Milestones:
 - Gathered necessary datasets for GIS analysis
 - Completed review of existing LCA literature on components of sensor network
 - Began figure generation of GIS analysis
 - Began LCA figure generation of existing research
- Current year metrics:
 - Complete GIS figure generation
 - Complete LCA figure generation
 - Complete first chapter of thesis

Remote Autonomous Sensors: Planned Research Outcomes

- Feasibility of current design in Montana will our network succeed
- Analysis framework for future networks
- Design change recommendations
- This framework should be used to ensure design feasibility for future government monitoring networks

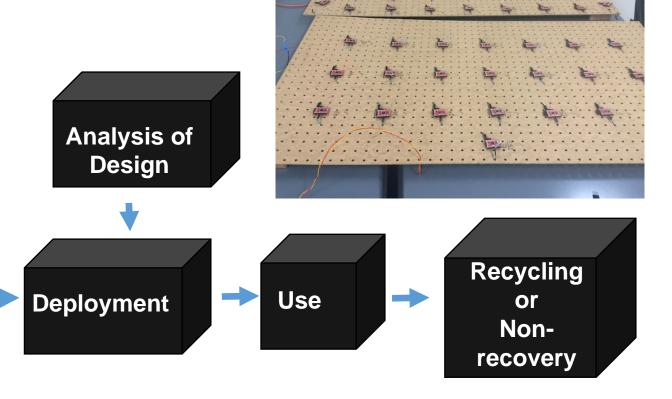
Remote Autonomous Sensors: Transition Plans

- In order to achieve the desired outcomes of the research, investigation team plans the following transition pathways:
 - This framework will be published in Environmental Monitoring and Assessment
 - Coordinate the use of this framework with Coast Guard and other DHS entities

Experience as an ADAC Fellow

Participated and presented research at nationwide conferences

- Completed summer internship with the Maritime Security Center at Stevens Institute of Technology
- Understand STEM job opportunities in the government
- ADAC has opened their resources to aid in helping lining up future career possibilities
 - Ideally involving disaster response

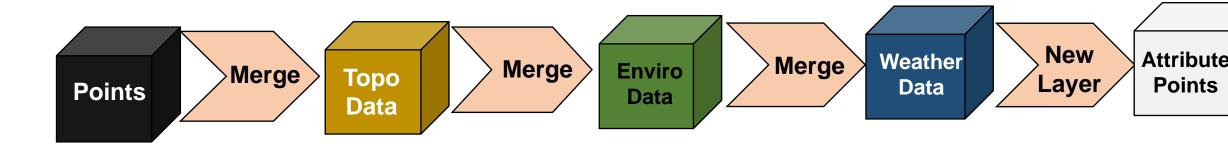

Ready for questions

Feedback...

Processing of

Raw Materials

- What are we missing?
- What can we improve?
- Who should we contact to improve the integration of this research?



Manufacturing

ADAC: Research for the Arctic Operator...For Today and For the Future